Pre-Calculus ### Chapter 3 Test, Form 2A Determine whether the graph of each equation is symmetric with respect to the origin, the x-axis, the y-axis, the line y = x, the line y = -x, or none of these. 1. $$xy = -4$$ **2.** $$x = 5y^2 - 2$$ **3.** Determine whether the function $$f(x) = \frac{x}{x^2 - 4}$$ is odd, even, or neither. **4.** Describe the transformations relating the graph of $$y = -2x^3 + 4$$ to its parent function, $y = x^3$. **5.** Use transformations of the parent graph $$p(x) = \frac{1}{x}$$ to sketch the graph of $p(x) = \frac{1}{|x|} - 1$. **6.** Graph the inequality $$y > 2x^2 - 1$$. **7.** Solve $$|5 - 2x| \ge 11$$. Find the inverse of each function and state whether the inverse is a function. $$8. f(x) = \frac{x}{x+2}$$ **9.** $$f(x) = x^2 - 4$$ **10.** Graph $$f(x) = x^3 - 2$$ and its inverse. State whether the inverse is a function. ### Chapter 3 Test, Form 2A (continued) Determine whether each function is continuous at the given x-value. If discontinuous, state the type of discontinuity (point, jump, or infinite). 11. $$f(x) = \begin{cases} x^2 + 1 \text{ if } x < 1 \\ -x^3 + 2 \text{ if } x \ge 1 \end{cases}$$; $x = 1$ **12.** $$f(x) = \frac{x^2 + 9}{x + 3}$$; $x = -3$ **13.** Describe the end behavior of $$y = -3x^4 - 2x$$. **14.** Locate and classify the extrema for the graph of $$y = x^4 - 3x^2 + 2$$. **15.** The function $$f(x) = x^3 - 3x^2 + 3x$$ has a critical point when $x = 1$. Identify the point as a maximum, a minimum, or a point of inflection, and state its coordinates. **16.** Determine the vertical and horizontal asymptotes for the graph of $$y = \frac{x^2 - 4}{x^3 - 5x^2 + 6x}$$. **17.** Find the slant asymptote for $$y = \frac{3x^2 - 5x + 1}{x - 2}$$. - **19.** If y varies directly as x and inversely as the square root of z, and y = 8 when x = 4 and z = 16, find y when x = 10and z = 25. - 19. - **20.** *Physics* The kinetic energy E_k of a moving object, measured in joules, varies jointly as the mass *m* of the object and the square of the speed v. Find the constant of variation k if E_k is 36 joules, m is 4.5 kilograms, and v is 4 meters per second. - 20. **Bonus** Given the graph of p(x), sketch the graph of $y = -2p\left[\frac{1}{2}(x-2)\right] + 2.$ ## Chapter ### Chapter 4 Test, Form 2A #### Solve each equation or inequality. 1. $$(3x - 2)^2 = 121$$ $$2. \frac{3}{2}t^2 - 6t = -\frac{15}{2}$$ $$3. \ 4 + \frac{4}{a+2} \ge \frac{4}{5}$$ **4.** $$\sqrt{2x+5} = 2\sqrt{2x} + 1$$ **5.** $$\sqrt{12b-3} \le \sqrt{5b+2}$$ **6.** $$\frac{2}{x+2} + \frac{x}{2-x} < \frac{13}{4-x^2}$$ **7.** $$\sqrt{d-6} - 3 = \sqrt{d}$$ - 8. Use the Remainder Theorem to find the remainder when $x^5 + x^3 + x$ is divided by x - 3. State whether the binomial is a factor of the polynomial. - 8. _____ - **9.** Determine between which consecutive integers the real zeros of $f(x) = 4x^4 - 4x^3 - 25x^2 + x + 6$ are located. - 9. **10.** Decompose $\frac{-3x-19}{2x^2-5x-3}$ into partial fractions. 10. _____ **11.** Find the value of k so that the remainder of $(x^4 - 3x^3 + kx^2 - 10x + 12) \div (x - 3)$ is 0. - 11. _____ - **12.** Approximate the real zeros of $f(x) = 2x^4 + 3x^2 20$ to the nearest tenth. - 12. ### Chapter 4 Test, Form 2A (continued) - **13.** Use the Upper Bound Theorem to find an integral upper bound and the Lower Bound Theorem to find an integral lower bound of the zeros of $f(x) = 2x^3 - 4x^2 + 2$. - 13. - **14.** Write a polynomial function with integral coefficients to model the set of data below. | х | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | |------|-----|------|------|------|-----|-----|-----|-----|-----|-----|------| | f(x) | 7.3 | 11.2 | 12.1 | 11.2 | 8.0 | 6.2 | 3.5 | 2.5 | 2.2 | 5.7 | 12.0 | - 14. - **15.** Find the discriminant of $5x 3x^2 = -2$ and describe the nature of the roots of the equation. - **15.** _____ - **16.** Find the number of possible positive real zeros and the number of possible negative real zeros for $f(x) = 2x^4 - 7x^3 - 5x^2 + 28x - 12.$ - 16. - 17. List the possible rational roots of $2x^3 + 3x^2 17x + 12 = 0$. - 17. - **18.** Determine the rational roots of $x^3 6x^2 + 12x 8 = 0$. - 18. - **19.** Write a polynomial equation of least degree with roots -2, 2, -3i, and 3i. How many times does the graph of the related function intersect the *x*-axis? - 19. _____ - **20.** Francesca jumps upward on a trampoline with an initial velocity of 17 feet per second. The distance d(t) traveled by a free-falling object can be modeled by the formula $d(t) = v_0 t - \frac{1}{2}gt^2$, where v_0 is the initial velocity and grepresents the acceleration due to gravity (32 feet per second squared). Find the maximum height that Francesca will travel above the trampoline on this jump. - 20. _____ **Bonus** Find f if f is a cubic polynomial function such that f(0) = 0 and f(x) is positive only when x > 4. Bonus: